If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y4 + 7y2 + -54 = 0 Reorder the terms: -54 + 7y2 + 3y4 = 0 Solving -54 + 7y2 + 3y4 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -18 + 2.333333333y2 + y4 = 0 Move the constant term to the right: Add '18' to each side of the equation. -18 + 2.333333333y2 + 18 + y4 = 0 + 18 Reorder the terms: -18 + 18 + 2.333333333y2 + y4 = 0 + 18 Combine like terms: -18 + 18 = 0 0 + 2.333333333y2 + y4 = 0 + 18 2.333333333y2 + y4 = 0 + 18 Combine like terms: 0 + 18 = 18 2.333333333y2 + y4 = 18 The y term is 2.333333333y2. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333y2 + 1.361111112 + y4 = 18 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333y2 + y4 = 18 + 1.361111112 Combine like terms: 18 + 1.361111112 = 19.361111112 1.361111112 + 2.333333333y2 + y4 = 19.361111112 Factor a perfect square on the left side: (y2 + 1.166666667)(y2 + 1.166666667) = 19.361111112 Calculate the square root of the right side: 4.400126261 Break this problem into two subproblems by setting (y2 + 1.166666667) equal to 4.400126261 and -4.400126261.Subproblem 1
y2 + 1.166666667 = 4.400126261 Simplifying y2 + 1.166666667 = 4.400126261 Reorder the terms: 1.166666667 + y2 = 4.400126261 Solving 1.166666667 + y2 = 4.400126261 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + y2 = 4.400126261 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + y2 = 4.400126261 + -1.166666667 y2 = 4.400126261 + -1.166666667 Combine like terms: 4.400126261 + -1.166666667 = 3.233459594 y2 = 3.233459594 Simplifying y2 = 3.233459594 Take the square root of each side: y = {-1.798182303, 1.798182303}Subproblem 2
y2 + 1.166666667 = -4.400126261 Simplifying y2 + 1.166666667 = -4.400126261 Reorder the terms: 1.166666667 + y2 = -4.400126261 Solving 1.166666667 + y2 = -4.400126261 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + y2 = -4.400126261 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + y2 = -4.400126261 + -1.166666667 y2 = -4.400126261 + -1.166666667 Combine like terms: -4.400126261 + -1.166666667 = -5.566792928 y2 = -5.566792928 Simplifying y2 = -5.566792928 Reorder the terms: 5.566792928 + y2 = -5.566792928 + 5.566792928 Combine like terms: -5.566792928 + 5.566792928 = 0.000000000 5.566792928 + y2 = 0.000000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 5-5x=16-(6x+4) | | 0.5x-0.3(20+x)=0.4(20) | | (4+x)+(2+y)= | | 6(6+a)=0 | | x+3/5=5/3x | | -5x=-3x+20 | | 0=48y-96y^2 | | x+144+x+111+x=9327 | | -12x+12=-12 | | x-0.30x=26.25 | | 6y-9=2x+5 | | 8y+52=12 | | 3b-9-8b=21 | | 3x^2-8x-100=0 | | k^2-12k+40=0 | | 2x^2+44x+234=0 | | 2*(y+2)=45 | | 12x-y+15=0 | | -7=7n | | 0.71(21y+7)=0.2(18x+27) | | 5-3x=4-3(4-2x) | | 0=-2x^3+6x^2-6x | | 3y+2y+3*(y+1)=10 | | 4+4x=-16 | | -12-2x=-58 | | h(x)=-2x^3+6x^2-6x | | log(x-4)=7 | | 4(x-3)-2(x+5)=90 | | 11xy+12xy-x= | | 12t=-5 | | G(k)=14 | | 2y+3*(2y+7)=13 |